Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.452
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 578-584, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597450

RESUMO

OBJECTIVE: To investigate the regulatory role of miR-26b-3p in proliferation, migration and invasion of glioma. METHODS: The expressions of miR-26b-3p and cAMP-responsive element binding protein 1 (CREB1) in gliomas of different pathological grades were detected with RT-qPCR and Western blotting. Bioinformatic methods were used to analyze the target sequence of miRNA-26b-3p binding to CREB1, and dual luciferase gene reporter experiment was performed to explore the mechanism for targeted regulation of CREB1 by miR-26b-3p. Glioma U251 cells were treated with miR-26b-3p mimic or inhibitor, and the changes in CREB1 expression and cell proliferation, migration, invasion and apoptosis were determined with Western blotting, CCK-8 assay, wound healing assay, Transwell assay, and flow cytometry. RESULTS: The expression of miR-26b-3p decreased while CREB1 expression increased significantly as the pathological grade of gliomas increased (P < 0.05). Dual luciferase gene reporter experiment confirmed that CREB1 was a downstream target of miR-26b-3p. Inhibition of miR-26b-3p significantly upregulated the expression of CERB1, suppressed apoptosis and promoted proliferation and invasion of glioma cells, and overexpression of miR-26b-3p produced the opposite effects (P < 0.05). CONCLUSION: MiR-26b-3p regulates CREB1 expression to modulate apoptosis, proliferation, migration and invasion of glioma cells, thereby participating in tumorigenesis and progression of glioma.


Assuntos
Glioma , MicroRNAs , Humanos , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Glioma/genética , Glioma/patologia , Apoptose/genética , Proliferação de Células/genética , Luciferases/genética , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
2.
Arkh Patol ; 86(2): 37-41, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38591905

RESUMO

Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion is an extremely rare tumor. Its clinical manifestation is unspecific and only molecular genetic method can proof this diagnosis. This paper describes an unusual clinical presentation of primary pulmonary myxoid sarcoma in a 68-year-old patient with involvement of both lungs.


Assuntos
Neoplasias Pulmonares , Sarcoma , Humanos , Idoso , Sarcoma/genética , Sarcoma/diagnóstico , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína EWS de Ligação a RNA/genética
3.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587319

RESUMO

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Assuntos
Canabidiol , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Dopamina/farmacologia , Apelina/metabolismo , Apelina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia , Hipocampo/metabolismo , Expressão Gênica
4.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
COVID-19 , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/metabolismo , Pandemias , Replicação Viral , DNA Helicases/metabolismo , Adenosina Trifosfatases , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proliferação de Células , RNA Helicases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética
5.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480902

RESUMO

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Membrana Nuclear , Proteômica , Apoptose , DNA , Membrana Nuclear/metabolismo , Humanos , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
6.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481807

RESUMO

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hiperpigmentação , Animais , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Lipopolissacarídeos/toxicidade , Melanócitos/metabolismo , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473754

RESUMO

Muscle formation directly determines meat production and quality. The non-SMC condensin I complex subunit G (NCAPG) is strongly linked to the growth features of domestic animals because it is essential in controlling muscle growth and development. This study aims to elucidate the tissue expression level of the bovine NCAPG gene, and determine the key transcription factors for regulating the bovine NCAPG gene. In this study, we observed that the bovine NCAPG gene exhibited high expression levels in longissimus dorsi and spleen tissues. Subsequently, we cloned and characterized the promoter region of the bovine NCAPG gene, consisting of a 2039 bp sequence, through constructing the deletion fragment double-luciferase reporter vector and site-directed mutation-identifying core promoter region with its key transcription factor binding site. In addition, the key transcription factors of the core promoter sequence of the bovine NCAPG gene were analyzed and predicted using online software. Furthermore, by integrating overexpression experiments and the electrophoretic mobility shift assay (EMSA), we have shown that cAMP response element binding protein 1 (CREB1) and myogenic differentiation 1 (MYOD1) bind to the core promoter region (-598/+87), activating transcription activity in the bovine NCAPG gene. In conclusion, these findings shed important light on the regulatory network mechanism that underlies the expression of the NCAPG gene throughout the development of the muscles in beef cattle.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Regulação da Expressão Gênica , Bovinos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regiões Promotoras Genéticas , Mioblastos
8.
Cell Biol Toxicol ; 40(1): 16, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472656

RESUMO

Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1ß and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1ß. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Mitofagia , Animais , Humanos , Ratos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/farmacologia , Apoptose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Qualidade de Vida , Ratos Sprague-Dawley
9.
Zhen Ci Yan Jiu ; 49(3): 265-273, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500323

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) on the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/cAMP response element binding protein (CREB) signaling pathway-related proteins and hippocampal neuron apoptosis in diabetic cognitive impairment (DCI) rats, and to explore the mechanisms of EA in treating DCI. METHODS: Adult male SD rats were randomly divided into normal, model, and EA groups, with 12 rats in each group. The animal model of DCI was replicated using a high-fat, high-sugar diet combined with low-dose streptozotocin. The EA group received EA stimulation at "Yishu" (EX-B6), "Zusanli" (ST36), "Baihui" (GV20), and "Dazhui" (GV14). Blood glucose contents of the rats in each group were measured. The Morris water maze test was used to assess the learning and memory abilities of rats. Transmission electron microscopy was used to observe the ultrastructure of hippocampal CA1 neurons. Nissl staining was used to observe the pathological changes in hippocampal CA1 neurons. TUNEL staining was used to detect the apoptosis in hippocampal CA1 neurons. Western blot was used to detect the protein expression levels of p-PI3K/PI3K and p-Akt/Akt, as well as CREB, p-CREB, cysteine aspartate pro-tease (Caspase)-3, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) in the hippocampal tissue of rats. RESULTS: Compared with the normal group, the rats' random blood glucose contents were significantly increased (P<0.01), the escape latency prolonged (P<0.01), and the original platform crossing counts reduced (P<0.01) in the model group. Significant damage to hippocampal CA1 neurons, a significantly increased neuronal apoptosis index (P<0.01), decreased ratio of p-PI3K/PI3K and p-Akt/Akt and expression of CREB, p-CREB and Bcl-2 proteins, increased expression of Caspase-3 and Bax proteins (P<0.01) were observed in the hippocampal tissue of rats in the model group. Compared with the model group, the rats in the EA group showed decreased random blood glucose content (P<0.01), shortened escape latency (P<0.01), increased original platform crossing counts (P<0.01), improved quantity and pathological morphology and ultrastructure of hippocampal CA1 neurons, reduced neuronal apoptosis index (P<0.01), increased ratio of p-PI3K/PI3K and p-Akt/Akt, and expression of CREB, p-CREB and Bcl-2 proteins (P<0.05, P<0.01) in the hippocampal tissue, and decreased expression of Caspase-3 and Bax proteins (P<0.01). CONCLUSIONS: EA can improve the learning and memory abilities of rats with DCI, and the mechanism may be related to the regulation of the expression of PI3K/Akt/CREB signaling pathway-related proteins, which attenuates the neuronal apoptosis in the hippocampus of rats, and improves the neural function.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Eletroacupuntura , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Glicemia , Transdução de Sinais , Hipocampo/metabolismo , Apoptose , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia
10.
BMC Oral Health ; 24(1): 388, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532349

RESUMO

BACKGROUND: The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs. METHODS: The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs. RESULTS: Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs. CONCLUSIONS: These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.


Assuntos
Ferroptose , Osteogênese , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/farmacologia , Polpa Dentária , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Aciltransferases/metabolismo , Aciltransferases/farmacologia
11.
Exp Mol Med ; 56(2): 408-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316963

RESUMO

Lower back pain (LBP), which is a primary cause of disability, is largely attributed to intervertebral disc degeneration (IDD). Macrophages (MΦs) in degenerated intervertebral discs (IVDs) form a chronic inflammatory microenvironment, but how MΦs are recruited to degenerative segments and transform into a proinflammatory phenotype remains unclear. We evaluated chemokine expression in degenerated nucleus pulposus cells (NPCs) to clarify the role of NPCs in the establishment of an inflammatory microenvironment in IDD and explored the mechanisms. We found that the production of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 7 (CCL7) was significantly increased in NPCs under inflammatory conditions, and blocking CCL2/7 and their receptor, C-C chemokine receptor type 2(CCR2), inhibited the inductive effects of NPCs on MΦ infiltration and proinflammatory polarization. Moreover, activation of the integrated stress response (ISR) was obvious in IDD, and ISR inhibition reduced the production of CCL2/7 in NPCs. Further investigation revealed that activating Transcription Factor 3 (ATF3) responded to ISR activation, and ChIP-qPCR verified the DNA-binding activity of ATF3 on CCL2/7 promoters. In addition, we found that Toll-like receptor 4 (TLR4) inhibition modulated ISR activation, and TLR4 regulated the accumulation of mitochondrial reactive oxygen species (mtROS) and double-stranded RNA (dsRNA). Downregulating the level of mtROS reduced the amount of dsRNA and ISR activation. Deactivating the ISR or blocking CCL2/7 release alleviated inflammation and the progression of IDD in vivo. Moreover, MΦ infiltration and IDD were inhibited in CCR2-knockout mice. In conclusion, this study highlights the critical role of TLR4/mtROS/dsRNA axis-mediated ISR activation in the production of CCL2/7 and the progression of IDD, which provides promising therapeutic strategies for discogenic LBP.


Assuntos
Degeneração do Disco Intervertebral , Dor Lombar , Núcleo Pulposo , Animais , Camundongos , Fator 3 Ativador da Transcrição , Quimiocinas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Inflamação , Ligantes , Macrófagos , Receptores de Quimiocinas , Transdução de Sinais , Receptor 4 Toll-Like , Humanos
12.
ACS Chem Biol ; 19(3): 753-762, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412264

RESUMO

Activating transcription factor 3 (ATF3) is an activation transcription factor/cyclic adenosine monophosphate (cAMP) responsive element-binding (CREB) protein family member. It is recognized as an important regulator of cancer progression by repressing expression of key inflammatory factors such as interferon-γ and chemokine (C-C motif) ligand 4 (CCL4). Here, we describe a novel library screening approach that probes individual leucine zipper components before combining them to search exponentially larger sequence spaces not normally accessible to intracellular screening. To do so, we employ two individual semirational library design approaches and screen using a protein-fragment complementation assay (PCA). First, a 248,832-member library explored 12 amino acid positions at all five a positions to identify those that provided improved binding, with all e/g positions fixed as Q, placing selection pressure onto the library options provided. Next, a 59,049-member library probed all ten e/g positions with 3 options. Similarly, during e/g library screening, a positions were locked into a generically bindable sequence pattern (AIAIA), weakly favoring leucine zipper formation, while placing selection pressure onto e/g options provided. The combined a/e/g library represents ∼14.7 billion members, with the resulting peptide, ATF3W_aeg, binding ATF3 with high affinity (Tm = 60 °C; Kd = 151 nM) while strongly disfavoring homodimerization. Moreover, ATF3W_aeg is notably improved over component PCA hits, with target specificity found to be driven predominantly by electrostatic interactions. The combined a/e/g exponential library screening approach provides a robust, accelerated platform for exploring larger peptide libraries, toward derivation of potent yet selective antagonists that avoid homoassociation to provide new insight into rational peptide design.


Assuntos
Fator 3 Ativador da Transcrição , Biblioteca de Peptídeos , Fator 3 Ativador da Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Peptídeos/metabolismo
13.
J Cancer Res Clin Oncol ; 150(3): 108, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421462

RESUMO

PURPOSE: This review primarily aims to review the epidemiology, clinical characteristics, imaging, pathology, immunohistochemistry, diagnosis, differential diagnosis, treatment, and prognosis of Primary pulmonary myxoid sarcoma (PPMS) with EWS RNA binding protein 1::cAMP response element binding protein 1 (EWSR1::CREB1) fusion. It provides reference for the diagnosis and treatment of this disease. METHODS: Retrospectively collected the literature about PPMS with EWSR1::CREB1 fusion, its clinical, radiology, histology, molecular characteristics and current treatment strategies were collated and analyzed. This review provides a detailed differential diagnosis of the disease. RESULTS: PPMS is an exceptionally rare, low-grade malignant tumor of the lung. This tumor commonly infiltrates lung tissue and develops within bronchial passages. It is identified by a genetic rearrangement involving the EWSR1 gene and a distinct chromosomal translocation t(2; 22)(q33; q12). Variants include EWSR1::CREB1 fusion and EWS RNA binding protein 1::activating transcription factors (EWSR1::ATF1) fusion. PPMS with EWSR1::CREB1 fusion is more prevalent among middle-aged individuals and affects both sexes almost equally. Clinical symptoms are relatively non-specific, primarily including cough, hemoptysis, and weight loss. Most patients undergo surgery and experience a favorable prognosis. Further research is required to validate the effectiveness of alternative treatments for PPMS with EWSR1::CREB1 fusion. CONCLUSION: EWSR1 rearrangement and EWSR1::CREB1 fusion are crucial genetic features of PPMS and serve as important diagnostic markers. Immunohistochemically, PPMS tests positive for EMA. In terms of treatment, surgery has been the primary approach in recent years. Therefore, the efficacy of other treatments still requires further investigation.


Assuntos
Aberrações Cromossômicas , Sarcoma , Feminino , Masculino , Pessoa de Meia-Idade , Humanos , Proteína EWS de Ligação a RNA/genética , Estudos Retrospectivos , Diagnóstico Diferencial , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/terapia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética
14.
Nature ; 627(8003): 374-381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326616

RESUMO

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Assuntos
Astrócitos , Comunicação Celular , Perfilação da Expressão Gênica , Memória de Longo Prazo , Neurônios , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Análise de Sequência de RNA , Imagem Individual de Molécula , Análise da Expressão Gênica de Célula Única , Ubiquitinação
15.
PLoS One ; 19(2): e0296187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315652

RESUMO

Depression is a common stress disability disorder that affects higher mental functions including emotion, cognition, and behavior. It may be mediated by inflammatory cytokines that interfere with neuroendocrine function, and synaptic plasticity. Therefore, reductions in inflammation might contribute to treatment response. The current study aims to evaluate the role of Protein Kinase (PKA)- cAMP response element-binding protein (CREB)- brain derived neurotropic factor (BDNF) signaling pathway in depression and the effects of roflumilast (PDE4 inhibitor) as potential antidepressant on the activity of the PKA-CREB-BDNF signaling pathway, histology, and pro-inflammatory cytokine production. Forty Adult male Wistar rats were divided into 4 groups: Control group, Positive Control group: similar to the controls but received Roflumilast (3 mg / kg / day) by oral gavage for the last 4 weeks of the experiment, Depressed group which were exposed to chronic stress for 6 weeks, and Roflumilast-treated group which were exposed to chronic stress for 6 weeks and treated by Roflumilast (3 mg / kg / day) by oral gavage for the last 4 weeks of the experiment. The depressed group showed significant increase in immobility time with significant decrease in swimming and struggling times, significant decrease in hippocampal PKA, CERB, BDNF, Dopamine, Cortisone, and Superoxide dismutase while hippocampal Phosphodiesterase-E4, Interleukin-6, and Malondialdhyde levels were significantly elevated. These findings were significantly reversed upon Roflumilast treatment. Therefore, it could be concluded that depression is a neurodegenerative inflammatory disease and oxidative stress plays a key role in depression. Roflumilast treatment attenuated the depression behavior in rats denoting its neuroprotective, and anti-inflammatory effects.


Assuntos
Aminopiridinas , Benzamidas , Doenças Neurodegenerativas , Inibidores da Fosfodiesterase 4 , Ratos , Masculino , Animais , Ratos Wistar , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores da Fosfodiesterase 4/metabolismo , Doenças Neurodegenerativas/metabolismo , Hipocampo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclopropanos
16.
Phytomedicine ; 126: 155340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401490

RESUMO

BACKGROUND: Fluoxetine is often used as a well-known first-line antidepressant. However, it is accompanied with hepatogenic injury as its main organ toxicity, thereby limiting its application despite its superior efficacy. Fluoxetine is commonly traditionally used combined with some Chinese antidepressant prescriptions containing Rehmannia glutinosa (Dihuang) for depression therapy and hepatoprotection. Our previous experiments showed that co-Dihuang can alleviate fluoxetine-induced liver injury while efficiencies, and catalpol may be the key ingredient to characterize the toxicity-reducing and synergistic effects. However, whether co-catalpol can alleviate fluoxetine-induced liver injury and its toxicity-reducing mechanism remain unclear. PURPOSE: On the basis of the first recognition of the dose and duration at which pre-fluoxetine caused hepatic injury, co-catalpol's alleviation of fluoxetine-induced hepatic injury and its pathway was comprehensively elucidated. METHOD AND RESULTS: The hepatoprotection of co-catalpol was evaluated by serum biochemical indexes sensitive to hepatic injury and multiple staining techniques for hepatic pathologic analysis. Subsequently, the pathway by which catalpol alleviated fluoxetine-induced hepatic injury was predicted by network pharmacology to be predominantly the inhibition of ferroptosis. These were validated and confirmed in subsequent experiments with key technologies and diagnostic reagents related to ferroptosis. Further molecular docking showed that activating transcription factor 3 (ATF3) and ferroptosis suppressor protein 1 (FSP1) were the the most prospective molecules for catalpol and fluoxetine among many ferroptosis-related molecules. The critical role of ATF3/FSP1 signaling was further observed by surface plasmon resonance, diagnostic reagents, transmission electron microscopy, Western blot, real-time PCR, immunofluorescence, and immunohistochemistry. Results showed that fluoxetine directly bound to ATF3 and FSP1; agonisting ATF3 or blocking FSP1 abolished the alleviation of catalpol on fluoxetine-induced liver injury, and both exacerbated ferroptosis. Moreover, co-catalpol significantly enhanced the antidepressant efficacy of fluoxetine against depressive behaviours in mice. CONCLUSION: The hepatic impairment properties of fluoxetine were largely dependent on ATF3/FSP1 target-mediated ferroptosis. Co-catalpol alleviated fluoxetine-induced hepatic injury while enhancing its antidepressant efficacy, and that ATF3/FSP1 signaling-mediated inhibition of ferroptosis was involved in its co-administration detoxification mechanism. This study was the first to reveal the hepatotoxicity characteristics, targets, and mechanisms of fluoxetine; provide a detoxification and efficiency regimen by co-catalpol; and elucidate the detoxification mechanism.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Glucosídeos Iridoides , Camundongos , Animais , Fluoxetina/farmacologia , Fator 3 Ativador da Transcrição , Simulação de Acoplamento Molecular , Estudos Prospectivos , Antidepressivos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico
18.
Mol Biol Rep ; 51(1): 313, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374452

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE: This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS: Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS: Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION: In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.


Assuntos
Lesões Encefálicas Traumáticas , Peptídeo 1 Semelhante ao Glucagon , Fármacos Neuroprotetores , Animais , Masculino , Ratos , Apoptose , Lesões Encefálicas Traumáticas/tratamento farmacológico , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Hipocampo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos Sprague-Dawley , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Proteína Quinase 7 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
19.
Biotechnol J ; 19(2): e2300446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403442

RESUMO

Accumulation of the ribonucleoside, adenosine (ADO), triggers a cAMP response element binding protein (CREB)-mediated signaling pathway to suppress the function of immune cells in tumors. Here, we describe a collection of CREB-activated promoters that allow for strong and tunable ADO-induced gene expression in human cells. By optimizing number of CREB transcription factor binding sites and altering the core promoter region of CREB-based hybrid promoters, we created synthetic constructs that drive gene expression to higher levels than strong, endogenous mammalian promoters in the presence of ADO. These synthetic promoters are induced up to 47-fold by ADO, with minimal expression in their "off" state. We further determine that our CREB-based promoters are activated by other compounds that act as signaling analogs, and that combinatorial addition of ADO and these compounds has a synergistic impact on gene expression. Surprisingly, we also detail how background ADO degradation caused by the common cell culture media additive, fetal bovine serum (FBS), confounds experiments designed to determine ADO dose-responsiveness. We show that only after long-term heat deactivation of FBS can our synthetic promoters enable gene expression induction at physiologically relevant levels of ADO. Finally, we demonstrate that the strength of a CREB-based promoter is enhanced by incorporating other transcription factor binding sites.


Assuntos
Adenosina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Animais , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Adenosina/genética , AMP Cíclico/metabolismo , Regiões Promotoras Genéticas/genética , Expressão Gênica , Transcrição Gênica , Mamíferos/genética
20.
J Immunol Res ; 2024: 4817924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380081

RESUMO

Background: Ovarian cancer (OV) is characteristic of high incidence rate and fatality rate in the malignant tumors of female reproductive system. Researches on pathogenesis and therapeutic targets for OV need to be continued. This study mainly analyzed the immune-related pathogenesis and discovered the key immunotherapy targets for OV. Methods: WGCNA was used for excavating hub gene modules and hub genes related to the immunity of OV. Enrichment analysis was aimed to analyze the related pathways of hub gene modules. Biological experiments were used for exploring the effect of hub genes on SKOV3 cells. Results: We identified two hub gene modules related to the immunoscore of OV and found that these genes in the modules were related to the extracellular matrix and viral infections. At the same time, we also discovered six hub genes related to the immunity of OV. Among them, KIF26B and CREB3L1 can affect the proliferation, migration, and invasion of SKOV3 cells by the Wnt/ß-catenin pathway. Conclusions: The local infection or inflammation of ovarian may affect the immunity of OV. KIF26B and CREB3L1 are expected to be potential targets for the immunotherapy of OV.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Matriz Extracelular , Redes Reguladoras de Genes , Imunoterapia , Proteínas do Tecido Nervoso , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Cinesinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...